Daniel Ingraham

Dan has been around the block when it comes to coding (back-
end to front-end in multiple languages), and is always happy to
talk about a wide variety of topics, from nuclear physics to deer-
composting. Basically, if you can think of it, he can chime in with
some interesting tidbits about it!

Despite graduating with a degree in PoliSci, Dan jumped into the
world of software engineering shortly after college. He’s worked
as a senior developer for several companies during his decade-plus
software career, and is currently a senior engineer at InspectionX-
pert in Raleigh.

’ Email: daniel@danielingraham.com
GitHub: https://github.com/carrington

What’s a change you’ve made in the past couple years that’s
helped you in work, life, or both?

Forcing myself to take half an hour between finishing a task and
testing the task. I find far more defects when I’'m not experiencing
the end-of-task relief and euphoria.

What book would you give to someone starting off in software?

“Code Complete®” and “The Structure and Interpretation of Com-

puter Programs®”, the former because it will make them a better
coworker, and the latter because it will take them a few years

**“Code Complete 2” by Steve McConnell. A popular collection of software construction
techniques (variable-namin’ to deciding when to extrapolate out a function), among other
helpful things.

?¢“The Structure and Interpretation of Computer Programs” by Hal Abelson, Jerry Sussman,
and Julie Sussman. SICP focuses on discovering general patterns for problem-solving, and
building software systems that use those patterns (recursion, abstraction, etc.).

Daniel Ingraham 44

to fully appreciate the book, but once they do they will grasp
programming in a way that they never have before.

How did you get your first software job, and would you recom-
mend a similar path for someone looking to get into program-
ming now?

I got my first programming job before the advent of code schools,
and I would definitely recommend trying a school first, rather than
taking my path, which boiled down to responding to every posting
for a PHP/Web developer on Monster.com.

What do you look for in a teammate or when hiring a program-
mer for your team?

A strong desire to learn.
What’s a red flag for you when considering a new co-worker?

A tendency to assign blame. Programming is hard; everyone has
more to do than they should ideally have, and when two coding
minds collide there are always problems. Bugs are rarely one
person’s fault.

How do you stay up-to-date on new languages and technolo-
gies?

When I had more time, I would obsessively refresh Hacker News?”.
I still read it, but most of the time I keep my finger on the pulse of
things by checking what’s generating the most questions on Stack
Overflow?®.

What’s something you’ve struggled with in your career?

Early on, the stigma of being self-taught was my biggest problem.
Lately it’s slowing down long enough to test a solution from all
angles, as well as finding the time to do everything I need to do.

*"https://news.ycombinator.com/ - A popular site with late-breaking tech news and happen-
ings.

*https://stackoverflow.com/ - Hugely popular site for programming questions and answers.
Many of your coding-related searches will end up here.

Daniel Ingraham 45

What advice would you give to an aspiring developer? What
advice would you tell them to ignore?

Find the tool that is easiest for you to comprehend and try to
implement everything in it at least once, even if you don’t have
to. Code Katas, design patterns, whatever.

Don’t let anyone tell you to switch languages or stacks because it’s
not “serious” or “pure” enough; PHP served massive demand for
years despite being a “bad” language.

Spend time understanding the fundamentals of programming; you
may never have to know what the optimal data structure for a given
problem is, but you’ll be a better programmer for learning why it’s
optimal.

Lastly, ignore the voice in your head that tells you you’re not a real
or good enough programmer. We all have that voice (or, at least,
every engineer I've spoken to about the matter does) and it’s the
biggest impediment to getting better.”’

What’s an unusual habit or superstition you have with pro-
gramming?

If something looks like it’s working right the first time you run it,
it’s horrifically broken somehow.

What’s something that surprised you about programming?

There’s vastly more art and intuition in programming than is
popularly appreciated.

What do you like to listen to while coding?

Podcasts; they somehow occupy the part of my brain that has a
tendency to distract me from a complicated task.

*’This feeling is known as Imposter Syndrome, and is really common among software
developers (I've felt it pretty often, too).

Robbie Allen

The first time I saw Robbie was at a Ruby meetup in Raleigh; he
stood up at the end and mentioned that he had formed his own
company, Automated Insights, and was looking for some Ruby
developers. Shortly after that, I was on my way to Ai as a software
engineer.

Luckily, one of Robbie’s big focuses at Ai was on making it a place
where people would want to come to work, and I'd have to say he
did a pretty dang good job of that.

Robbie’s since sold Ai, and is now the co-founder and CEO of
another tech startup known as Startomatic, which aims to make it
easier than ever for entrepreneurs to start their own company. He
has over 20 years of experience in the software world, including
programming, being a writer and editor for O’Reilly, and being a
successful startup founder.

What book would you give to someone starting off in software?
Mythical Man Month*°

How did you get your first software job, and would you recom-
mend a similar path for someone looking to get into program-
ming now?

I highly recommend college students do one or more internships.

What do you look for in a teammate or when hiring a program-
mer for your team?

Eager to learn, humble, positive, and smart.

**“The Mythical Man-Month: Essays on Software Engineering” by Fred Brooks, who helped
found the computer science department at UNC. A book about software development and
project management that drives home the point that “adding manpower to a late software project
makes it later” (known as Brooks’ law).

